Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(11): 6028-6039, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457781

RESUMEN

The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.


Asunto(s)
Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/metabolismo , Proteómica , Pared Celular/química , Fusarium/genética , Fusarium/metabolismo , Enfermedades de las Plantas
2.
J Agric Food Chem ; 71(49): 19302-19311, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018120

RESUMEN

As resistance to chemical fungicides continues to increase inFusarium graminearum, there is a growing need to develop novel disease control strategies. To discover essential genes that could serve as new disease control targets, we selected essential gene candidates that had failed to be deleted in previous studies. Thirteen genes were confirmed to be essential, either by constructing conditional promoter replacement mutants or by employing a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated editing strategy. We synthesized double-stranded RNAs (dsRNAs) targeting these essential genes and analyzed their protective effects in plants using a spray-induced gene silencing (SIGS) method. When dsRNAs targeting Fg10360, Fg13150, and Fg06123 were applied to detached barley leaves prior to fungal inoculation, disease lesions were greatly reduced. Our findings provide evidence of the potential of essential genes identified by a SIGS method to be effective targets for the control of fungal diseases.


Asunto(s)
Fusarium , Genes Esenciales , Silenciador del Gen , Fusarium/genética , ARN Bicatenario , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
Microbiol Spectr ; : e0148523, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671872

RESUMEN

In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.

4.
Commun Biol ; 5(1): 1129, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289323

RESUMEN

Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi.


Asunto(s)
Exonucleasas , ARN , Intrones , Virulencia/genética
5.
Mol Plant Pathol ; 22(11): 1427-1435, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390122

RESUMEN

Fusarium graminearum is an important plant-pathogenic fungus that causes Fusarium head blight on wheat and barley, and ear rot on maize worldwide. This fungus has been widely used as a model organism to study various biological processes of plant-pathogenic fungi because of its amenability to genetic manipulation and well-established outcross system. Gene deletion and overexpression/constitutive expression of target genes are tools widely used to investigate the molecular mechanism underlying fungal development, virulence, and secondary metabolite production. However, for fine-tuning gene expression and studying essential genes, a conditional gene expression system is necessary that enables repression or induction of gene expression by modifying external conditions. Until now, only a few conditional expression systems have been developed in plant-pathogenic fungi. This study proposes a new and versatile conditional gene expression system in F. graminearum using the promoter of a copper-responsive gene, designated F. graminearum copper-responsive 1 (FCR1). Transcript levels of FCR1 were found to be greatly affected by copper availability conditions. Moreover, the promoter (PFCR1 ), 1 kb upstream of the FCR1 open reading frame, was sufficient to confer copper-dependent gene expression. Replacement of a green fluorescent protein gene and FgENA5 promoter with a PFCR1 promoter clearly showed that PFCR1 could be used for fine-tuning gene expression in this fungus. We also demonstrated the applicability of this conditional gene expression system to an essential gene study by replacing the promoter of FgIRE1, an essential gene of F. graminearum. This enabled the generation of FgIRE1 suppression mutants, which allowed functional characterization of the gene. This study reported the first conditional gene expression system in F. graminearum using both repression and induction. This system would be a convenient way to precisely control gene expression and will be used to determine the biological functions of various genes, including essential ones.


Asunto(s)
Fusarium , Cobre/farmacología , Proteínas Fúngicas/genética , Fusarium/genética , Expresión Génica , Enfermedades de las Plantas , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...